Precise control of osteogenesis for craniofacial defect repair: the role of direct osteoprogenitor contact in BMP-2-based bioprinting.
نویسندگان
چکیده
BACKGROUND Success with bone morphogenetic protein-2 (BMP-2) has been widely reported in the osseous reconstruction of large calvarial defects. These efforts have required enormous doses of BMP-2 and are not sufficiently refined to facilitate the detail-oriented repair required for intricate craniofacial structures. We have previously shown that inkjet-based bioprinting technologies allow for precisely customized low-dose protein patterns to induce spatially regulated osteogenesis. Here, we investigate the importance of direct contact between bioprinted BMP-2 and the dura mater (a source of osteoprogenitors) in mediating calvarial healing. METHODS Five-millimeter osseous defects were trephinated in mouse parietal bones (N=8). Circular acellular dermal matrix (ADM) implants were prepared such that 1 semicircle of 1 face per implant was printed with BMP-2 bio-ink. These implants were then placed ink-toward (N=3) or ink-away (N=5) from the underlying dura mater. After 4 weeks, osteogenesis was assessed in each of the 4 possible positions (BMP-2-printed area toward dura, BMP-2-printed area away from dura, unprinted area toward dura, and unprinted area away from dura) by faxitron. RESULTS The BMP-2-printed portion of the ADM generated bone covering an average of 66.5% of its surface area when it was face-down (printed surface directly abutting dura mater). By comparison, the BMP-2-printed portion of the ADM generated bone covering an average of only 21.3% of its surface area when it was face-up (printed surface away from dura). Similarly, the unprinted portion of the ADM generated an average of only 18.6% osseous coverage when face-down and 18.4% when face-up. CONCLUSIONS We have previously shown that inkjet-based bioprinting has the potential to significantly enhance the role of regenerative therapies in craniofacial surgery. This technology affords the precise control of osteogenesis necessary to reconstruct this region's intricate anatomical architecture. In the present study, we demonstrate that direct apposition of BMP-2-printed ADM to a source of osteoprogenitor cells (in this case dura mater) is necessary for bio-ink-directed osteogenesis to occur. These results have important implications for the design of more complex bioprinted osseous structures.
منابع مشابه
Various Dosages of BMP-2 for Management of Massive Bone Defect in Sprague Dawley Rat
Introduction: The use of BMP-2 plays an important role in the treatment of extensive bone defect. However, data about the optimal dosage of BMP-2 in the massive bone defect cases is rare. Material and Method: Twenty-five SD rats were randomly divided into a control group ofhydroxyapatite (HA) alone (Group I), HA+BMP-2 1µg/mL (Group II), HA+BMP-2 5 ug/mL (Group III), HA+BMP-2 10 µg/mL (Gro...
متن کاملDifferentiation of osteoprogenitor cells is induced by high-frequency pulsed electromagnetic fields.
UNLABELLED Craniofacial defect repair is often limited by a finite supply of available autologous tissue (ie, bone) and less than ideal alternatives. Therefore, other methods to produce bony healing must be explored. Several studies have demonstrated that low-frequency pulsed electromagnetic field (PEMF) stimulation (ie, 5-30 Hz) of osteoblasts enhances bone formation. The current study was des...
متن کاملInkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation.
The purpose of this study was to demonstrate spatial control of osteoblast differentiation in vitro and bone formation in vivo using inkjet bioprinting technology and to create three-dimensional persistent bio-ink patterns of bone morphogenetic protein-2 (BMP-2) and its modifiers immobilized within microporous scaffolds. Semicircular patterns of BMP-2 were printed within circular DermaMatrix hu...
متن کاملInkjet-based biopatterning of SDF-1β augments BMP-2-induced repair of critical size calvarial bone defects in mice.
BACKGROUND A major problem in craniofacial surgery is non-healing bone defects. Autologous reconstruction remains the standard of care for these cases. Bone morphogenetic protein-2 (BMP-2) therapy has proven its clinical utility, although non-targeted adverse events occur due to the high milligram-level doses used. Ongoing efforts explore the use of different growth factors, cytokines, or chemo...
متن کاملCharacterization of Reversibly Immortalized Calvarial Mesenchymal Progenitor Cells.
BACKGROUND Bone morphogenetic proteins (BMPs) play a sentinel role in osteoblastic differentiation, and their implementation into clinical practice can revolutionize cranial reconstruction. Preliminary data suggest a therapeutic role of adenoviral gene delivery of BMPs in murine calvarial defect healing. Poor transgene expression inherent in direct adenoviral therapy prompted investigation of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of plastic surgery
دوره 69 4 شماره
صفحات -
تاریخ انتشار 2012